Module 4

Building Fabric 1: Air Permeability

Energy Efficiency for Construction
To equip the learner with the relevant knowledge and skills required to understand the importance of airtightness and wind-tightness and how to implement measures to alleviate heat loss.
1. Define the term **air permeability** and describe how the air permeability of a building has an influence on heat losses.

2. List common **leakage points** in both masonry and timber frame construction types.

3. Outline the multiplicity of **benefits** that airtightness brings to dwellings.

4. Identify the **airtight layer**, its constituent parts and its routing on building assemblies and junctions.

5. Outline how **airtightness** can be achieved for **different construction forms**, floor, walls and roof and the detail for difficult junctions (separating floors, wall to roof, wall to floor, reveals) and for service penetrations.

6. Identify and outline the different kinds of **air tightness products** (tapes, membranes, paint and plaster) that can be used to create long-term airtightness on rough concrete, plaster, wood or membranes.

7. Understand the benefits and demonstrate the creation of a **service cavity** on the warm side of walls and attic ceilings to avoid the need for services to penetrate the vapour control layer.

8. Understand the importance of an **airtightness strategy** and the roles of each team member.

9. List and outline the consequences of using materials not **fit-for-purpose** in relation to creating airtightness in dwellings over time, (such as low-quality tapes and silicone sealants which tend to delaminate after a period of some months or year).
Building Fabric 1 | Content

Topic 1 – Air Tightness in Buildings
Topic 2 – Air Tightness Strategy and Materials
Topic 3 – Air Permeability Test

On the following slides you will see this icon:

Click and play to find out more
1. Air Tightness in Buildings
Air Leakage

Definition of Air Leakage

The **Uncontrolled** flow of air through **Gaps**, **Cracks** and **Holes** in the fabric of the Building

Infiltration and Exfiltration

Image Source: Passive House Institute
Airtightness: One continuous airtight layer on the warm (interior) side

The RED LINE

Image Source: MosArt
Benefits of Airtightness

- Eliminate drafts
- Improve comfort
- Reduce heat losses
- Reduce heating bills
- Reduce risk of interstitial condensation
- Improved sound proofing
- Increase efficiency of ventilation system

Image Source: MosArt
Benefits of Windtightness

- Breathable but wind-tight layer located on the wall exterior
- Improved performance of the insulation layer (the heat is not blown away by the wind)
- Reduced heat losses and energy bills
- Improved comfort
- Especially important with ‘loose’ insulation such as cellulose or mineral wool

Image Source: Partel
Vapour Open Windtightness: Overlap & Tape Joints

Image Source: Partel
Vapour Open Windtightness: Overlap & Tape Joints

Image Source: MosArt
Windtight Layer - Very Important on Dormer Roof

- Prevents cold wind blowing through insulation
- Note how all joints are taped – vapour open tape!
Roof Windtightness – Only Used with Warm Roofs

Image Source: Partel
Where should we put the Airtightness layer?
Location of the Airtightness ‘Layer’

Airtightness:
One continuous airtight layer on the warm (interior) side
The RED LINE

Image Source: MosArt
Evolution of Airtightness Standards in Ireland

Airtightness for Part L and nZEB = m³/h.m²
Passive House = air changes per hour

<table>
<thead>
<tr>
<th>Standard</th>
<th>Airtightness (m³/h.m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part L 2002</td>
<td>10</td>
</tr>
<tr>
<td>Part L 2005</td>
<td>7</td>
</tr>
<tr>
<td>Part L 2007</td>
<td>7</td>
</tr>
<tr>
<td>Part L 2011</td>
<td>5</td>
</tr>
<tr>
<td>nZEB Backstop</td>
<td>3</td>
</tr>
<tr>
<td>Most NZEB Houses</td>
<td>1</td>
</tr>
<tr>
<td>Passive House EnerPHit</td>
<td>0.6</td>
</tr>
<tr>
<td>Passive House New-build</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Energy Efficiency for Construction: Building Fabric 1

Image Source: MosArt
Air permeability q_{E50} result: $\text{m}^3/\text{hr.m}^2$
Air Permeability and Energy Performance

- These figures are based on an NZEB dwelling modelled in DEAP.

- The only change made to the dwelling is the air permeability number – everything else remained the exact same.

- The more airtight the building becomes, the more energy efficient it is.

Image Source: MosArt
Communicate Importance of Airtightness

Be Innovative and record all penetrations by different trades - to be signed off by project airtightness ‘champion’. This needs teamwork and understand how the air tightness strategy works.
Get in the Right Frame of Mind for Airtightness

- When it comes to airtightness, attitude is everything. Get into the submarine mindset!

- You wouldn’t use cheap materials in a submarine, so you shouldn’t do so in a house either.

- Just like in a submarine, if one of the team bursts a hole, the entire project will suffer.
Identification of Airtightness Layer: Wall to Floor Junction

- Construction Type: insulated cavity, insulation below floor
- Air barrier location (shown in blue)
- Air barrier continuity checklist
- Air barrier options

Energy Efficiency for Construction: Building Fabric 1

Image Source: Department of Housing, Planning and Local Government
Energy Efficiency for Construction: Building Fabric 1

Identification of Airtightness Layer: Eaves

- Construction Type: insulated cavity, eaves, ventilated attic
- Air barrier location (shown in blue)
- Air barrier continuity checklist
- Air barrier options

Thermal Performance
- Ensure continuity of insulation throughout junction
- Ensure full depth of insulation between and over joints at eaves insulation
- Ensure gap between wall plate and proprietary eaves vent is completely filled with insulation having a min. R-value across the insulation thickness of 3.00 m²K/W
- Ensure partial fill insulation is secured firmly against inner leaf of cavity wall. If using partial fill insulation, tack compressible insulation down into the head of the cavity

General Notes
- Thermal performance of junctions can be improved by incorporating an eaves wind barrier (plywood, OSB, softboard or other suitable material) around insulation to be sealed to connect with the ventilator strip thereby mitigating wind chill from the vent inlet in the eaves.
- Keep covels clean before mortar setting or other debris during construction.
- Use of over joint insulation is considered best practice, as it eliminates the cold bridge caused by the joint.
- Use a proprietary eaves ventilator to ensure ventilation in accordance with B55250. Installation of the eaves ventilator must not prevent free water drainage below the tiling battens.
- Ensure cavity is closed with first stopping or proprietary cavity barrier.

Air Barrier - Options
- Masonry inner leaf with wet-finish plaster, or
- Masonry inner leaf with scratch coat, and finished with plasterboard, or
- Inner leaf with plasterboard, or
- Airtightness membrane and tapes

Image Source: Department of Housing, Planning and Local Government

Insert Organisational Logo for Illustrative purposes only. Please remove prior to final production.

Co-funded by the Erasmus+ Programme of the European Union

TUS Technological University of the Shannon: Midlands Midwest. Official Use Only/Official Use Only: Lis na hÉireann Lár
2. Air Tightness Strategy and Materials
Non – Airtight Materials
Energy Efficiency for Construction:
Building Fabric 1
Ducktape
Does not have longevity
Reliably Airtight Materials

Plastered brick or blockwork

Specialist tapes and membranes

Certified airtightness boards

Concrete poured on site

Specialist liquid applied membranes

Energy Efficiency for Construction: Building Fabric 1

Image Source: Lower left - Medite SmartPly / Bottom right - Partel / Others - MosArt
In almost every project, there are lots of different materials used to create one continuous airtight layer.

In this example of a building the following materials were used:

- Airtight membranes
- Sand and cement plaster
- Window units
- Airtight tapes at junctions and overlaps
- Poured concrete floor
Not all OSB Boards are Airtight

“We started finding increasing evidence of OSB3 failure in the timber frame extension of this house”
Airtightness Strategies - Masonry Projects

- Quick and easy to apply
- Can achieve excellent levels of airtightness
- Offers a solution to problematic air tightness junctions
- M1 emissions certification of building materials
Airtightness Strategies - Masonry Projects

Energy Efficiency for Construction: Building Fabric 1

Image Source: Blowerproof
Airtightness Strategies - Masonry Projects

Energy Efficiency for Construction: Building Fabric 1

Image Source: Partel
Energy Efficiency for Construction:
Building Fabric 1
Image Source: Partel
Energy Efficiency for Construction:

Building Fabric 1

Image Source: MosArt
Sealing Connections in Masonry Projects

Liquid applied membrane painted to all connections

Quick and easy to apply
Airtightness in Insulated Concrete Form (ICF) Construction

Thermo Wall with Window

Fixing Screw
CTF G ± 20C (See Table-1.1H 019)
Min. Embedment = 50mm

To achieve an airtight seal between the panels
After fixing a panel into position, a "low expansion" "adhesive" foam should be applied into the groove (as indicated), before fitting next panel. Allow no more than 2 - 3 mins for foam to settle before joining panels

Roof Purlin to Engineers specification

Thermo Roof

Image Source: Thermohouse

Energy Efficiency for Construction: Building Fabric 1
Specialty Airtightness and Vapour Control Membranes

Energy Efficiency for Construction: Building Fabric 1

Image Source: Partel
Fixing Airtight Membranes to Timber Frame

Image Sources: WWETB and SIGA
Airtight Tape Technical Details

<table>
<thead>
<tr>
<th>Tape size:</th>
<th>60mm x 30m Roll</th>
</tr>
</thead>
</table>

Key Technical Data

<table>
<thead>
<tr>
<th>Can be used</th>
<th>Externally, Internally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction type</td>
<td>Cross Laminated Timber (CLT), Lightweight construction, Metal frame, Prefabricated (off-site manufactured) timber frame, Timber frame</td>
</tr>
</tbody>
</table>

Durability
- Airtight for 100 years (Kassel University independent testing)

For use on
- Ceilings, Roofs, Suspended timber floors, Walls (timber frame), Walls with closed timber cladding (no gaps)

Permanently sticks to
- Aluminium, Aluminium / foil membranes, Chipboard, Hard plastics, MDF, Metal, OSB, PE, PA, PP, PET and foil membranes, Painted timber, Plywood, Pro Clima membranes, Smooth planed timber

Primer required for sticking to
- Dust producing surfaces, Gypsum plaster, Lime plaster, Rough/uneven surfaces, Smooth cement (plaster or render), Smooth concrete, Surfaces that may come-away or delaminate, Wood fibre rigid insulation boards

<table>
<thead>
<tr>
<th>Release strip width</th>
<th>60mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Release strip/paper</td>
<td>Silicone coated paper</td>
</tr>
<tr>
<td>Roll Length</td>
<td>30 m</td>
</tr>
<tr>
<td>Roll Width</td>
<td>60 mm</td>
</tr>
</tbody>
</table>

Warranty
- 10 years (when correctly installed with Pro Clima system products only), 6 years (when correctly installed with non-Pro Clima products)

| sd-value | 0.4 m |
Avoid Reducing Warranties by Mixing Products

Two different brands of airtightness products were used on this project – this will reduce the warranty provided and should thus be avoided. This may also create problems if the membranes do not perform in the same way as each other.
Avoid Reducing Warranties by Mixing Products

It is best to stick with airtightness products from the same brand to guarantee warranty.
Use of caulks is very common in construction.

- When using caulks to create airtight connections or seal leakage points, careful consideration must be given to the type of caulk used.

- Where caulks are used, the airtight layer is only as durable as the caulk holding it together!
Sealing Membranes to Floors and Ceilings

- Vapour control layer and airtight layer is achieved using a membrane
- All joints and connections are taped
- Connection to floor and ceiling for this project used specialist airtightness sealant
- Complete airtight system in place
Caulk Failure!
Appropriate caulks for airtight connections

- Standard building caulks are not designed to be durable enough to last the life time of the building.
- They will likely dry out, shrink or crack after the first couple of years.
- Quality caulks will be tested to an established standard, such as DIN 4108-11 - ‘Thermal insulation and energy economy in buildings - Part 11: Minimum requirements to the durability of bond strength with adhesive tapes and adhesive masses for the establishment of airtight layers’.
Appropriate caulks for airtight connections

Partel’s ‘airtight caulk’

Fields of Application

Indoor usage for airtight connections of airtight membranes including Partel Vara Plus and Izoperm Plus to DIN 4108.

Suitable for plaster, untreated wood, concrete, stone, moisture and vapour barriers. Surfaces must be clean, dry and free of dust and grease. One surface must always be absorbent. Not suitable for Sauna and swimming pools.

Ecological Building Systems ‘airtight caulk’

Advantages

- Very high adhesion and quick drying. No pressure latch is required on load-bearing substrates
- Very elastic, permanently flexible
- Penetrates deep into the substrate
- Can also be stored in the event of frost
- Construction in adherence with standards: for airtight bonding in accordance with DIN 4106-7, SIA 180 and RT 2012
- Excellent values in the hazardous substance test, has been tested according to the ISO 16800 evaluation scheme

You will find this sort of information on the suppliers website, on the tube of caulk or by asking your supplier.
Inappropriate caulks for airtight connections

<table>
<thead>
<tr>
<th>SPECIFICATION</th>
<th>Anonymous</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brand</td>
<td>EN 11600, F12-5E</td>
</tr>
<tr>
<td>CE Standard (Tested to EN...)</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>White</td>
</tr>
<tr>
<td>Label Info 4: Supplementary Label Info</td>
<td>May produce an allergic reaction. Safety data sheet available on request.</td>
</tr>
<tr>
<td>Label Info 5: Hazardous Chemical Content</td>
<td>Contains 4,5-dichloro-2-octyl-2H-isothiazol-3-one</td>
</tr>
<tr>
<td>Manufacturer Guarantee</td>
<td>1 Year Guarantee</td>
</tr>
<tr>
<td>Max Heat Resistant Temperature</td>
<td>150 °C</td>
</tr>
<tr>
<td>Pack Size</td>
<td>1</td>
</tr>
<tr>
<td>Parent Colour</td>
<td>White</td>
</tr>
<tr>
<td>Pieces in Pack/Case</td>
<td>1</td>
</tr>
<tr>
<td>Product Type</td>
<td>Sanitary Silicone</td>
</tr>
<tr>
<td>Resistant Type</td>
<td>Waterproof & Water-Repellent</td>
</tr>
<tr>
<td>Sealant/Adhesive Container Type</td>
<td>Cartridge</td>
</tr>
<tr>
<td>Suitable Application</td>
<td>For Use on Baths, Showers, Basins & Sanitaryware</td>
</tr>
<tr>
<td>Volume</td>
<td>310 ml</td>
</tr>
<tr>
<td>Water Resistant</td>
<td>Water-Resistant Once Fully Cured</td>
</tr>
</tbody>
</table>

Use of Caulk Rolls for Easy Application

While airtight caulks can be an excellent solution, they have two main disadvantages:

- An even application can be difficult
- They need time to dry

These disadvantages have been addressed with the creation of caulk rolls. It is easy to apply an even thickness and there is no drying time.

Adhesive performance is the same as liquid caulk.

Images Source: Left - Partel / Right - SIGA
Why use caulk in airtight connections?

• When using an airtight tape, it is important that there is a large surface contact between the tape and the material it is being applied to.

• This is not a problem when sticking to smooth surfaces, such as steel, timber or plastic but can be difficult when taping to a rough surface, such as concrete.

• Caulks can penetrate the pores in the concrete, creating an excellent bond on a molecular level.

![Airtight tape](Image Source: MosArt)

![Airtight caulk](Image Source: MosArt)

Note the limited contact between concrete and tape

Note the large contact between concrete and caulk
Sealing Membranes to Floors and Ceilings

Connections to concrete floors can be a particularly difficult connection

In this project, the connection to the concrete floor had failed shortly after installation

There are a number of reasons for this:
• Use of inappropriate products for rough surface
• Dirty surface
• Might require the use of a primer

Do it right the first time to avoid wasting time and money, and compromising on quality!
Sealing the Wall to Floor Junction

Super neat application of tape will ensure no draughts or energy loss due to air leakage.

Image Source: MosArt
Connecting Different Surface Types

- In this case, a complex junction of wood window, OSB ceiling and masonry wall needs careful planning and material selection.
- Use the right tape for the right job.

- Tape to masonry has perforations to facilitate:
 - good key to plaster
 - Some imperfections on this junction: can you see them?
Airtightness Strategies - Masonry Projects

Step 1 – Install airtight membranes on the ceiling using staples or double sided tape.

Step 2 – Seal the overlap between membranes (100mm of an overlap is required between membranes, and an airtight tape must be used).

Step 3 – Use a plasterable tape to connect the membrane to the masonry wall.

Step 4 – Plaster the wall, covering the plasterable tape (or use liquid applied membrane).
Membranes will get nicked and torn – often by the plasterers trowel – make sure to repair with patches of airtight tape.
Maintaining Continuity of the Airtight Layer

- Can you see a problem with this image in relation to airtightness?

- In this retrofit project, all of the internal walls on the first floor were erected before the airtight membrane was installed.

- This makes it impossible to connect the membranes on the ceilings of each room.

Sequencing is key when it comes to airtightness!

Image Source: MosArt
How could this be avoided?

1) The walls could be plastered and airtight membranes installed before erecting internal walls.

2) The areas that will be separated by internal walls could be covered with a strip of airtight material before the walls are erected.
When it comes to continuity of the airtight barrier between rooms, **sequencing** is key.
Continuity of Airtightness Below the Attic is Essential

Note how internal masonry walls stop short of the airtightness layer enabling easy connection of all spaces

Energy Efficiency for Construction: Building Fabric 1

Image Source: MosArt
Membranes can get damaged when dragging over sharp or rough edges – be sure to repaid as you go.

Image Source: MosArt
Energy Efficiency for Construction: Building Fabric 1

One Small Room – 8 Different Airtightness Connections

1. Membrane applied to ceiling joints, taped and service cavity installed
2. Ceiling membrane overlaps with walls, to be sealed with plasterable tape (not yet in place)
3. Window taped to reveal
4. Liquid applied membrane to multiple junctions
5. Service penetration sealed
6. Roof straps sealed with plasterable tape. Watch-out for thermal bridging issues
7. Electrical chase sealed
8. All external masonry walls to be plastered

Image Source: MosArt

Insert Project Logo Here For Illustrative purposes only delete this stage from final production

Co-funded by the Erasmus+ Programme of the European Union
Seal all Elements

Adhesive used to connect membrane to wall
Tape joints between membranes
Patch of membrane used to seal steel I-beam over window
Seal all chases
Tape window surround
Seal All Connections

1. Window to steel beam
2. Steel beam to block wall
3. Block wall to ceiling membrane
4. Wall to wall junction

Image Source: MosArt
Maintaining Continuity of the Airtight Layer – Concrete Floor

How do we maintain continuity between ground floor and first floor?

Airtight Multi-story Masonry:

- This example is a new built masonry cavity wall construction
- On completion of ground floor walls, airtight membrane draped over top of wall onto floor above
- Later taped to upper-story wall and integrated into plaster layer
- This detail requires forethought, as it must be included before the floor slab is installed

Image Source: MosArt
Dealing with Changes in Floor level

Membrane was pre-wrapped around concrete floor slab at higher level to maintain airtightness
• The majority of intermediate floors in Ireland are made of timber joists which are built into the internal leaf.

• Maintaining the airtight layer in such a case requires taping each joist individually, on both ends. This is possible in new builds but can also be achieved in retrofits, as shown above.
Step 1: Plaster Strip of Blockwork to Correct Dimensions

Image Source: WWETB-MosArt
Step 2: Mechanically Fix Hangers – Seal with Caulk

Image Source: WWETB-MosArt
Step 3: Space Hangers to Structural Requirements

Energy Efficiency for Construction: Building Fabric 1

Image Source: WWETB-MosArt
Step 4: Insert Joists

Image Source: MosArt

Energy Efficiency for Construction:
Building Fabric 1
Step 5: Build Next Floor Up (where needed)
Strip of Airtight Membrane Used at First Floor

View from below

Image Source: MosArtt

Energy Efficiency for Construction: Building Fabric 1

Insert Organiser Logo Here for Illustrative purposes only before final production.
Block wall not plastered before insertion of joist hangers – this will reduce airtightness significantly
1. Insert full wrap-around membrane into I-beam
2. Install joists, wrapping in membrane
3. Seal membrane to wall above
4. Seal membrane in other space

Image Source: MosArt

NZEB for Bricklayers

Energy Efficiency for Construction: Building Fabric 1

Co-funded by the Erasmus+ Programme of the European Union
Sealing Joists Inserted into Steel Beam

Membrane cut long enough to extend to full height of beam

Image Source: MosArt

Energy Efficiency for Construction: Building Fabric 1

Co-funded by the Erasmus+ Programme of the European Union
The Impact of First Fix on Air Permeability

Once continuity of airtightness has been maintained, first fix becomes the biggest risk to airtightness.

Quality assurance is key to success!
Use of a Service Cavity to Reduce Service Penetrations

- The site on the left is a scheme of 65 NZEB homes, which have utilised a service cavity to achieve an excellent level of airtightness.

- Use of a ‘service cavity’ on the interior of the airtight membrane protects the membrane from the homeowner, and reduces service penetrations.

- A service cavity is a great idea when aiming for a good air permeability number.

- Service cavities can be insulated to improve the u-value of the wall.

- Socket boxes can also be installed without damaging the airtight layer.

Can you spot any issue with using vertical battens in the service cavity instead of horizontal ones?

Think thermal bridging!
Use of a Service Cavity – Not Just for Timber Frame
Consider providing means by which future services can be brought into the dwelling without compromising the airtightness layer.

Using a rubber / neoprene patch enables easy and reliable sealing of penetrations.

Probably best located in utility room through which future services might be routed.

Thinking ahead!
Risks Associated with Poor Workmanship

• Might not meet the required air-permeability target
• Might not be able to certify the project
• Increased discomfort for occupants (drafts)
• Risk of moisture build up in external envelope
• Reduced effectiveness of the ventilation system
• Increased noise pollution from exterior
Air Permeability Test
• The airtightness test ‘rehearsal fan’ is typically inserted into a window or door

• They cost approximately €800 + VAT – the cost of three airtightness tests

• They pay for themselves very quickly
Official Blower Door Test

- Must be completed by an Accredited Tester
- Measured at 50 Pascal
- Might need multiple tests if first result is poor
- Every NZEB dwelling must be tested
- (no default air permeability numbers any more)

Image Source: WWETB-MosArt
Blower Door Targets

EN9972 recommends testing in both directions:

• Recommended to carry out 10 positive and negative airtightness tests. You can evaluate the sealing provided by the window and door gaskets when they are inward opening. A better airtightness result is expected for a positive pressure test where the sash gasket is ‘pressed-against’ the frame.

• Official result is the average of all tests positive and negative.
Chimneys for an open fire are a **route for heat loss.** It is a **large hole in the building**

<table>
<thead>
<tr>
<th>Item</th>
<th>Ventilation rate m³/hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chimney</td>
<td>40</td>
</tr>
<tr>
<td>Open flue</td>
<td>20</td>
</tr>
<tr>
<td>Intermittent extract fan</td>
<td>10</td>
</tr>
<tr>
<td>Passive vent</td>
<td>10</td>
</tr>
<tr>
<td>Flueless gas fire</td>
<td>40</td>
</tr>
</tbody>
</table>

>200mm Ø = Chimney

<200mm Ø = Flue
As long as no one is entering or leaving the building, most construction work can continue whilst the airtightness test is being carried out.
Checklist

• On your first project(s), it is recommended to do several intermediate tests to determine how the building is performing
• If you leave the test to the very end, you will probably not have access to the sources of any leaks
• Build testing into the construction project – allow for this in the tender documents

Typically, on a house project the contractor should allow for 3 pressure tests:

1. Building sealed, including electrical first fix in place.
2. Mechanical ventilation system & all services penetrating external fabric of building have been fully installed.
3. Practical completion
Energy Efficiency for Construction:
Building Fabric 1

Source - MosArt:
Envelope Checks - Airtightness

Leak Detection - Anemometer

- Cannot find unexpected leaks?
- Severity of leaks to be gauged
- Will prove a leak if others doubt its presence
Leak Detection - Smoke

• There are 3 main types of smoke used:
 • **mini-smoke** – smoke puffers and pencils that are useful for determining draughts at specific locations
 • **small smoke gun** – handheld smoke guns are useful for especially around windows and to determine air movement paths in discrete areas of the building
 • **mega smoke** – such as disco generators. These are handy for particularly larger, perhaps single skinned buildings, to determine leakage locations from outside.
Airtightness – Visualising the Leaks

With an infrared (thermographic) camera, leaks can be visualized before and during the measurement.

Cold air leakage through an external door

Cold air leakage through a poorly sealed attic hatch

Image Source: Flir
“Build Tight – Ventilate Right”

It is essential to provide high indoor air quality

Where good levels of airtightness are being delivered (< 3.0 m³/hour.m² @ 50 Pascal), it is important to provide some kind of mechanical ventilation (ideally with heat recovery)

Image Source: MosArt
NZEB Compliance Using DEAP

Energy Efficiency for Construction: Building Fabric 1

Image Source: MosArt

Air Permeability 5.0 m³/m²/hr

Thermal Bridging 0.15 W/m²K

U-Value 0.08 W/m²K

Insulation thickness 360mm
NZEB Compliance Using DEAP

Energy Efficiency for Construction: Building Fabric 1

Air Permeability 3.0 m³/m²/hr

Thermal Bridging 0.08 W/m²K

U-Value 0.13 W/m²K

Insulation thickness 220mm

Image Source: MosArt
Energy Efficiency for Construction: Building Fabric 1

Air Permeability 0.6 m³/m²/hr

Thermal Bridging 0.04 W/m²K

U-Value 0.18 W/m²K

Insulation thickness 150mm

Image Source: MosArt

NZEB Compliance Using DEAP

Co-funded by the Erasmus+ Programme of the European Union
NZEB Compliance Using DEAP

Air Permeability 5.0 m3/m2/hr
Thermal Bridging 0.15 W/m2K
U-Value 0.08 W/m2K
Insulation thickness 360mm

Air Permeability 3.0 m3/m2/hr
Thermal Bridging 0.08 W/m2K
U-Value 0.13 W/m2K
Insulation thickness 220mm

Air Permeability 0.6 m3/m2/hr
Thermal Bridging 0.04 W/m2K
U-Value 0.18 W/m2K
Insulation thickness 150mm

Each DEAP input has an impact on the overall energy performance. If one input has a poor performance, other inputs must perform very well to ensure overall targets (EPC, CPC, RER) are achieved.
Assessment

Energy Efficiency for Construction:
Building fabric 1

QUIZ!
Module 4

Building Fabric 1:
Air Permeability

Energy Efficiency for Construction
To equip the learner with the relevant knowledge and skills required to understand the importance of airtightness and wind-tightness and how to implement measures to alleviate heat loss.
Air Tightness Strategy
Importance of Airtightness Strategy - Traditional

As previously mentioned:
Be Innovative and record all penetrations by different trades

Choose an Airtightness champion who will sign off air tightness for the project.

Teamwork and understanding how the air tightness strategy works is important

This can be completed using a board in the main office

Image Source: MosArt-Michael Bennett contractors
Importance of Airtightness Strategy - Digital

Or

- Use a **Mobile App** to allow each team member to record airtightness installations.
- Apps can also be used to take photographs to record before and after installation.
- Take photos of penetrations which need to be corrected
- Support the transfer of information into a central location
- Up to date information

Lets look at the **Mobile Field App Trello** -
You can download a free Trello App on the phone.

Step 1: Download the Trello application from the app store

Step 2: Create a Trello account by clicking ‘Sign Up’.

Step 3: Create an account using ‘Sign up with email’

Download a free Trello App on your laptop or tablet using the link:

https://trello.com/en/platforms

Install

Step 1: Download the App,
Mobile Field App – Trello

Tutorial lessons related to Trello have been developed using the free tool

Set Up

Step 1: Download Trello

Step 2: Create a Trello board to help track progress in your specific field (in your trade for a project).

Step 3: Apply the use of the app to a scenario and include lists, cards, checklists and explore the menu options. You should also include images and due dates to several of your cards.

Learn more

Helpful guides to using Trello https://trello.com/guide
Demo in the use of Trello https://www.youtube.com/watch?v=xky48zyL9iA
1. Upon opening the app, you will be asked what board you want to select.
2. Once you open a board, you can navigate lists by swiping left and right.
3. To add a new list, click on ‘Add list’.
4. Name your list and press ‘Add’ to place it on the Trello board.
5. Images, checklists and due dates can be added to each card by simply clicking on them.
Energy Efficiency for Construction:

Building Fabric 1

Airtightness Quality Control

- Expected penetrations of AT layer to be inspected (filled in by design team/site supervisor)
 - Plumbing penetrations: Oct 9, 0/5
 - Electrical penetrations: Oct 9, 0/9
 - Ventilation penetrations: Oct 9, 0/3
 - Telecommunications: Oct 9, 0/2
- Add another card

Copy List...

Create List

Actual penetrations of AT layer to be sealed (filled in by appropriate trades)
Activity 2:
See example of a template that could be used to improve airtightness quality control on site:

Expected penetrations of AT layer to be inspected (filled in by design team/site supervisor):

This list contains cards for each service that will likely need to penetrate the airtight layer. Within each card there is a checklist of common penetrations required to provide the service.

This list can be altered to include/exclude penetrations as required.

This list is the ‘to do’ list.
How to use Trello for Airtightness Quality Control

Airtightness Quality Control

<table>
<thead>
<tr>
<th>Building Services</th>
<th>+ Add another list</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plumbing Penetrations</td>
<td>🛠️ 0/3</td>
</tr>
<tr>
<td>Electrical Penetrations</td>
<td>🛠️ 3/7</td>
</tr>
<tr>
<td>Ventilation Penetrations</td>
<td>🛠️ 0/3</td>
</tr>
<tr>
<td>+ Add another card</td>
<td></td>
</tr>
</tbody>
</table>

Expected penetrations of AT layer to be inspected (filled in by design team/site supervisor):

This list contains cards for each service that will likely need to penetrate the airtight layer.

Within each card there is a checklist of common penetrations required to provide the service.

This list can be altered to include/exclude penetrations as required. This list is the ‘to do’ list.
Site supervisor/contractor should list all plumbing/electrical/ventilation/other services required for the project.

This will require collaboration with appropriate contractors.

This list can be used for every project once initially set up, and can be added to, for each project.
How to use Trello for Airtightness Quality Control

As services are installed, they can be crossed off the checklist. This gives the site supervisor a clear understanding of the services that have been installed to date.
Once the site supervisor has complied the list of building services specific to the project, they should use the ‘Copy List’ function.

Copy list: The ‘copy list’ function can be used to duplicate the initial list. This ensures that cards and checklists are the same across all lists on the board, ensuring no penetrations are missed. This also saves time duplicating lists manually.
Naming new list: Once you copy the initial list, it is important to rename it. It is a good idea to indicate who the list is for in the name (tradespeople, site management, quality control team).
Create list: Once you create the new list it will appear on the Trello board. This list is the ‘doing list’.
At this stage, services that do not penetrate the airtight layer can be removed from the list. This may include the cold water feed to the attic for example (assuming the airtightness layer is at ceiling level).

The ‘Unsealed Penetrations’ list can be used as a checklist for the airtightness champion. Ensures no penetrations are left unsealed. The checklist function can be used by airtightness champions to cross off penetrations as they seal them up.
Repeat 'copy list': By copying the list again you can create a third list. This list will be the ‘done’ list, meaning penetrations have been sealed. Images of completed work should be included in this list for quality control purposes.
The airtightness champion can copy the ‘Unsealed Penetrations’ list at regular intervals (weekly).

Site supervisors can use this list as a quality control measure. An penetration crossed off this list should be appropriately sealed. Therefore, site supervisors can ensure all penetration have been sealed prior to scheduling a blower door test.

Site supervisors can also select any penetration that has been crossed off this list to carry out a spot check.
Images of sealed penetrations can be added as an additional quality control measure.

This ensures each penetration is actually sealed, and allows the site supervisor to see that appropriate materials were used.
The ‘Due Date’ function can be used to ensure penetrations are sealed prior to scheduled blower door tests.
Electrical Penetrations

in list Sealed Penetrations

Description

Required electrical penetrations

☑️ Checklist

100%

☐ Mains-cable

☐ Earth-cable

☐ Telecommunications connection

☐ Car-charging-point

☐ Doorbell

☐ External-light-1

☐ External-light-2

Add another card

Hide completed items

Delete

Change Due Date

Date

Time

25/7/2020

15:16

Prev

July, 2020

Next

Set Reminder

2 Days Before

Reminders will be sent to all members and watchers of this card.

Save

Remove

Enable the Calendar Power-Up

You'll get a calendar view of your cards and an iCal feed. Woo!
Use the Mobile App Trello to set out a simple air tightness test.

Carry out the steps in this tutorial

Save the results for next class

Discuss all results in a group

Present the group findings
Thank You